Sample training client
ASRaaS offers a Python client application that you may download and run on Linux or Windows to compile wordsets using the Training API. To run this client, you need:
- Python 3.6 or later.
- The generated Python stubs from gRPC setup.
- Your client ID and secret from Prerequisites from Mix.
- A source (JSON) wordset as text or in a file. See Wordsets.
- The Python requests module. Install it with
pip install requests
- The Python client files: sample-training-client.zip
Download the zip file and extract its files into the same directory as the nuance directory containing your proto files and client stubs.
On Linux, give run-training-client.sh execute permission with chmod +x
. For example:
unzip sample-training-client.zip
chmod +x run-training-client.sh
pip install requests
pip install requests
These are the resulting client files, in the same directory as the nuance directory:
├── training-client.py
├── flow_compilewordsetandwatch.py
├── flow_deletewordset.py
├── flow_getwordsetmetadata.py
├── places-wordset.json
├── run-training-client.bat
├── run-training-client.sh
├── util.py
└── nuance
├── asr
│  ├── v1 [ASR Recognizer files]
│ └── v1beta1
│ ├── training_pb2_grpc.py
| └── training_pb2.py
└── rpc
├── error_details_pb2.py
├── status_code_pb2.py
└── status_pb2.py
You can use the client to compile wordsets, get information about existing compiled wordsets, and delete compiled wordsets. Once you have created the compiled wordsets, you can use them in the Recognizer API. See ResourceReference.
Get help
For a quick check that the client is working, and to see the arguments it accepts, run the client directly using the help (-h
or --help
) option.
See the results below and notice:
-
-f
or--files
: The input file or files containing your wordset training input and parameters. The sample script expects you to provide one of the flow_*.py files provided in the download package. For multiple files, specify--files flow1.py flow2.py
. -
-s
or--serverUrl
: The URL of the training server. The sample script specifies the Mix service,asr.api.nuance.com
, on its default port, 443. -
Authorization arguments: The recommended arguments are
--clientID
,--clientSecret
, and--oauthURL
. See Prerequisites from Mix. -
--token
: This hidden argument specifies an access token. If you use it, omit the other authorization arguments. See Another authorization method. -
--oauthScope
: The default is asr.wordset, as required by the Training API. -
The
--rootCerts
,--privateKey
,--certChain
, and--jaeger
arguments are not used in this hosted Mix environment.
The results are the same on Linux and Windows.
python3 training-client.py --help
usage: training-client.py [-options]
options:
-h, --help Show this help message and exit
-f file [file ...], --files file [file ...]
List of flow files to execute sequentially,
default=flow.py
-l lvl, --loglevel lvl Log level: fatal, error, warn, default=info, debug
-L [fn], --logfile [fn] Log to file, default fn=krcli-{datetimestamp}.log
-q, --quiet Disable console logging
-p, --parallel Run each flow in a separate thread
-i [num], --iterations [num] Number of times to run the list of files, default=1
-s [url], --serverUrl [url] ASR service URL, default=localhost:8090
-b, --disableBasicAuth Basic auth is required for Mix-generated credentials,
disable for others
--oauthURL [url] OAuth 2.0 URL
--clientID [url] OAuth 2.0 Client ID
--clientSecret [url] OAuth 2.0 Client Secret
--oauthScope [url] OAuth 2.0 Scope, default=asr.wordset
--secure Connect to the server using a secure gRPC channel
--rootCerts [file] Root certificates when using a secure gRPC channel
--privateKey [file] Certificate private key when using a secure gRPC
channel
--certChain [file] Certificate chain when using a secure gRPC channel
--jaeger [addr] Send UDP opentrace spans, default
addr=udp://localhost:6831
--meta [txtfile] Read header:value metadata lines from file,
default=.metadata
--maxReceiveSizeMB [megabytes] Maximum length of gRPC server response in megabytes,
default=50 MB
--wsFile [file] Inline wordset file for a gRPC channel. If provided,
overrides request.wordset in input file
Edit run script
First, edit the sample shell script or batch file to add your Mix client ID and secret. The script replaces the colons in the client ID with %3A so the value can be parsed correctly in subsequent operations.
#!/bin/bash
CLIENT_ID=<Mix client ID, starting with appID:>
SECRET=<Mix client secret>
# Change colons (:) to %3A in client ID
CLIENT_ID=${CLIENT_ID//:/%3A}
python3 client.py --secure \
--clientID $CLIENT_ID --clientSecret $SECRET \
--serverUrl asr.api.nuance.com:443 \
--oauthURL https://auth.crt.nuance.com/oauth2/token \
--files $1
# $1 - The name and location of an input file, for example flow_compilewordsetandwatch.
@echo off
setlocal enabledelayedexpansion
set CLIENT_ID=< Mix client ID, starting with appID:>
set SECRET=<Mix client secret>
rem Change colons (:) to %3A in client ID
set CLIENT_ID=!CLIENT_ID::=%%3A!
python client.py --secure ^
--clientID %CLIENT_ID% --clientSecret %SECRET% ^
--serverUrl asr.api.nuance.com:443 ^
--oauthURL https://auth.crt.nuance.com/oauth2/token ^
--files %1
rem %1 - The name and location of an input file, for example flow_compilewordsetandwatch.
Compile wordset
To compile a wordset, send the training request and watch as the job progresses. This scenario uses the flow_compilewordsetandwatch.py input file, which calls the CompileWordsetAndWatch method. The results are streamed back from the server as the compilation proceeds, so you can see the progress of the job.
Open the input file, flow_compilewordsetandwatch.py, and adjust the values for your wordset:
-
companion_artifact_reference.uri
: Change/<context_tag>/
to identify the DLM containing the entity you are extending with a wordset. This is the Context Tag of a Mix application, for example,/names-places/
or/A77_C1946/
. -
target_artifact_reference.uri
: Change/<context_tag>/<wordset_name>/
to a context tag and name for the compiled wordset you are creating. You may create a new tag for the wordset or use the same tag as its DLM, for example,/names-places/places-compiled-ws/
. -
wordset
: Enter your source wordset in compressed JSON. You may optionally leave this wordset as is and provide your own source wordset in a file containing either expanded or compressed JSON. The sample package includes a wordset file that you may edit: see places-wordset.json. -
metadata
: Optionally change the value to your operating system.
In this example, the wordset being created is named places-compiled-ws
. This wordset extends the PLACES entity in the DLM referenced in companion_artifact_reference
:
from nuance.asr.v1beta1.training_pb2 import *
list_of_requests = [8-9]
request = CompileWordsetRequest()
request.companion_artifact_reference.uri = "urn:nuance-mix:tag:model/names-places/mix.asr?=language=eng-USA"
request.target_artifact_reference.uri = "urn:nuance-mix:tag:wordset:lang/names-places/places-compiled-ws/eng-USA/mix.asr"
request.wordset = '{"PLACES":[{"literal":"La Jolla","spoken":["la hoya","la jolla"]},{"literal":"Llanfairpwllgwyngyll","spoken":["lan vire pool guin gill"]},{"literal":"Abington Pigotts"},{"literal":"Steeple Morden"},{"literal":"Hoyland Common"},{"literal":"Cogenhoe","spoken":["cook no"]},{"literal":"Fordoun","spoken":["forden","fordoun"]},{"literal":"Llangollen","spoken":["lan goth lin","lan gollen"]},{"literal":"Auchenblae"}]}'
request.metadata['app_os'] = 'CentOS'
#Add request to list
list_of_requests.append(request)
By default, the shell script or batch file uses the inline wordset in the flow file. If you prefer to use a source wordset file, add the --wsFile
argument, for example:
. . .
python3 client.py --secure \
--clientID $CLIENT_ID --clientSecret $SECRET \
--serverUrl asr.api.nuance.com:443 \
--oauthURL https://auth.crt.nuance.com/oauth2/token \
--files $1 \
--wsFile places-wordset.json
. . .
python client.py --secure ^
--clientID %CLIENT_ID% --clientSecret %SECRET% ^
--serverUrl asr.api.nuance.com:443 ^
--oauthURL https://auth.crt.nuance.com/oauth2/token ^
--files %1 ^
--wsFile places-wordset.json
Run the client using the shell script or batch file, passing it the input file, flow_compilewordsetandwatch.py, and watch the streaming results. ASRaaS reads the wordset from the file, compiles it as places-compiled-ws
, and stores it in the Mix environment.
This example uses the --wsFile
argument to pass the wordset file to the client, overriding the inline wordset in the input file. The results are the same on Linux and Windows.
./run-training-client.sh flow_compilewordsetandwatch.py
2023-01-26 16:56:20,924 INFO : Iteration #1
2023-01-26 16:56:20,924 INFO : Running flows in serial
2023-01-26 16:56:20,924 INFO : Obtaining auth token using basicAuth(...)
2023-01-26 16:56:21,308 INFO : Running file [flow_compilewordsetandwatch.py]
2023-01-26 16:56:21,308 INFO : Sending CompileWordsetAndWatch request
2023-01-26 16:56:21,309 INFO : Override the inline wordset with input file [places-wordset.json]
2023-01-26 16:56:21,309 INFO : Sending request: wordset: "{\n \"PLACES\":[\n {\n \"literal\":\"La Jolla\",\n \"spoken\":[\n \"la hoya\",\n \"la jolla\"\n ]\n },\n {\n \"literal\":\"Llanfairpwllgwyngyll\",\n \"spoken\":[\n \"lan vire pool guin gill\"\n ]\n },\n {\n \"literal\":\"Abington Pigotts\"\n },\n {\n \"literal\":\"Steeple Morden\"\n },\n {\n \"literal\":\"Hoyland Common\"\n },\n {\n \"literal\":\"Cogenhoe\",\n \"spoken\":[\n \"cook no\"\n ]\n },\n {\n \"literal\":\"Fordoun\",\n \"spoken\":[\n \"forden\",\n \"fordoun\"\n ]\n },\n {\n \"literal\":\"Llangollen\",\n \"spoken\":[\n \"lan goth lin\",\n \"lan gollen\"\n ]\n },\n {\n \"literal\":\"Auchenblae\"\n }\n ]\n}\n"
companion_artifact_reference {
uri: "urn:nuance-mix:tag:model/names-places/mix.asr?=language=eng-USA"
}
target_artifact_reference {
uri: "urn:nuance-mix:tag:wordset:lang/names-places/places-compiled-ws/eng-USA/mix.asr"
}
metadata {
key: "app_os"
value: "CentOS"
}
2023-01-26 16:56:21,309 INFO : Sending metadata: []
2023-01-26 16:56:21,780 INFO : new server stream count 1
2023-01-26 16:56:21,780 INFO : Received response: job_status_update {
job_id: "23178180-9dc3-11ed-8438-e116a8a4ec79"
status: JOB_STATUS_QUEUED
}
request_status {
status_code: OK
http_trans_code: 200
}
2023-01-26 16:56:22,077 INFO : new server stream count 2
2023-01-26 16:56:22,077 INFO : Received response: job_status_update {
job_id: "23178180-9dc3-11ed-8438-e116a8a4ec79"
status: JOB_STATUS_COMPLETE
}
request_status {
status_code: OK
http_trans_code: 200
}
2023-01-26 16:56:22,078 INFO : First chunk latency: 0.7691743187606335 seconds
2023-01-26 16:56:22,078 INFO : Done running file [flow_compilewordsetandwatch.py]
2023-01-26 16:56:22,078 INFO : Iteration #1 complete
2023-01-26 16:56:22,078 INFO : Average first-chunk latency (over 1 train requests): 0.7691743187606335 seconds
Done
run-training-client.bat flow_compilewordsetandwatch.py
2023-06-20 11:44:01,523 INFO : Iteration #1
2023-06-20 11:44:01,529 INFO : Running flows in serial
2023-06-20 11:44:01,529 INFO : Obtaining auth token using basicAuth(...)
2023-06-20 11:44:01,966 INFO : Running file [flow_compilewordsetandwatch.py]
2023-06-20 11:44:01,966 INFO : Sending CompileWordsetAndWatch request
2023-06-20 11:44:01,966 INFO : Override the inline wordset with input file [places-wordset.json]
2023-06-20 11:44:01,973 INFO : Sending request: wordset: "{\n \"PLACES\":[\n {\n \"literal\":\"La Jolla\",\n \"spoken\":[\n \"la hoya\",\n \"la jolla\"\n ]\n },\n {\n \"literal\":\"Llanfairpwllgwyngyll\",\n \"spoken\":[\n \"lan vire pool guin gill\"\n ]\n },\n {\n \"literal\":\"Abington Pigotts\"\n },\n {\n \"literal\":\"Steeple Morden\"\n },\n {\n \"literal\":\"Hoyland Common\"\n },\n {\n \"literal\":\"Cogenhoe\",\n \"spoken\":[\n \"cook no\"\n ]\n },\n {\n \"literal\":\"Fordoun\",\n \"spoken\":[\n \"forden\",\n \"fordoun\"\n ]\n },\n {\n \"literal\":\"Llangollen\",\n \"spoken\":[\n \"lan goth lin\",\n \"lan gollen\"\n ]\n },\n {\n \"literal\":\"Auchenblae\"\n }\n ]\n}\n"
companion_artifact_reference {
uri: "urn:nuance-mix:tag:model/names-places/mix.asr?=language=eng-USA"
}
target_artifact_reference {
uri: "urn:nuance-mix:tag:wordset:lang/names-places/places-compiled-ws/eng-USA/mix.asr"
}
metadata {
key: "app_os"
value: "Windows"
}
2023-06-20 11:44:01,973 INFO : Sending metadata: []
2023-06-20 11:44:02,350 INFO : new server stream count 1
2023-06-20 11:44:02,351 INFO : Received response: job_status_update {
job_id: "47a8b2a0-0f81-11ee-8afb-293ff5c2eff8"
status: JOB_STATUS_QUEUED
}
request_status {
status_code: OK
http_trans_code: 200
}
2023-06-20 11:44:02,668 INFO : new server stream count 2
2023-06-20 11:44:02,684 INFO : Received response: job_status_update {
job_id: "47a8b2a0-0f81-11ee-8afb-293ff5c2eff8"
status: JOB_STATUS_COMPLETE
}
request_status {
status_code: OK
http_trans_code: 200
}
2023-06-20 11:44:02,684 INFO : First chunk latency: 0.7030000000377186 seconds
2023-06-20 11:44:02,684 INFO : Done running file [flow_compilewordsetandwatch.py]
2023-06-20 11:44:02,684 INFO : Iteration #1 complete
2023-06-20 11:44:02,684 INFO : Average first-chunk latency (over 1 train requests): 0.7030000000377186 seconds
Done
You can then reference the compiled wordset in your recognition requests (see ResourceReference) using the URN you provided, for example:
urn:nuance-mix:tag:wordset:lang/<context_tag>/places-compiled-ws/eng-USA/mix.asr
Get information
To obtain information about a compiled wordset, use the flow_getwordsetmetadata.py input file, which calls the GetWordsetMetadata method. It returns metadata information but not the source JSON wordset.
Open flow_getwordsetmetadata.py and adjust the values for your wordset:
artifact_reference.uri
: Change/<context_tag>/<wordset_name>/
to the context tag and name of an existing wordset, for example,/names-places/places-compiled-ws/
.
from nuance.asr.v1beta1.training_pb2 import *
list_of_requests = []
request = GetWordsetMetadataRequest()
request.artifact_reference.uri = "urn:nuance-mix:tag:wordset:lang/names-places/places-compiled-ws/eng-USA/mix.asr"
# Add request to list
list_of_requests.append(request)
Run the client using the script file, passing it flow_getwordsetmetadata.py as input. The results are the same on Linux and Windows.
./run-training-client.sh flow_getwordsetmetadata.py
2023-01-26 17:04:54,160 INFO : Iteration #1
2023-01-26 17:04:54,161 INFO : Running flows in serial
2023-01-26 17:04:54,161 INFO : Obtaining auth token using basicAuth(...)
2023-01-26 17:04:54,492 INFO : Running file [flow_getwordsetmetadata.py]
2023-01-26 17:04:54,492 INFO : Sending GetWordsetMetadata request
2023-01-26 17:04:54,492 INFO : Sending request: artifact_reference {
uri: "urn:nuance-mix:tag:wordset:lang/names-places/places-compiled-ws/eng-USA/mix.asr"
}
2023-01-26 17:04:54,492 INFO : Sending metadata: []
2023-01-26 17:04:54,819 INFO : Received response: metadata {
key: "app_os"
value: "CentOS"
}
metadata {
key: "content-type"
value: "application/x-nuance-wordset-pkg"
}
metadata {
key: "x_nuance_companion_checksum_sha256"
value: "fbb50be65b2000d4eb18da64dfd238118024309136d65e910b89f592095cd497"
}
metadata {
key: "x_nuance_compiled_wordset_checksum_sha256"
value: "3c75b884164618d564337dffb35429db8c2579c0ad555f139b80e7fab2193662"
}
metadata {
key: "x_nuance_compiled_wordset_last_update"
value: "2023-01-26T21:48:15.373Z"
}
metadata {
key: "x_nuance_wordset_content_checksum_sha256"
value: "2b6e2eff5bcbfbea26284c7b5576be39ac8157041bdb133e7ed02ccf1a346b1a"
}
request_status {
status_code: OK
http_trans_code: 200
}
2023-01-26 17:04:54,819 INFO : Done running file [flow_getwordsetmetadata.py]
2023-01-26 17:04:54,822 INFO : Iteration #1 complete
Done
Delete wordset
To delete a compiled wordset, use the flow_deletewordset.py input file, which calls the DeleteWordset method. It removes the wordset permanently from the Mix environment.
Open flow_deletewordset.py nd adjust the values for your wordset:
artifact_reference.uri
: Change/<context_tag>/<wordset_name>/
to the context tag and name of the wordset you wish to delete, for example,/names-places/places-compiled-ws/
.
from nuance.asr.v1beta1.training_pb2 import *
list_of_requests = []
request = DeleteWordsetRequest()
request.artifact_reference.uri = "urn:nuance-mix:tag:wordset:lang/names-places/places-compiled-ws/eng-USA/mix.asr"
#Add request to list
list_of_requests.append(request)
Run the client using the run script, passing it flow_deletewordset.py as input. The results are the same on Linux and Windows.
./run-training-client.sh flow_deletewordset.py
2023-01-26 16:50:29,584 INFO : Iteration #1
2023-01-26 16:50:29,584 INFO : Running flows in serial
2023-01-26 16:50:29,584 INFO : Obtaining auth token using basicAuth(...)
2023-01-26 16:50:29,947 INFO : Running file [flow_deletewordset.py]
2023-01-26 16:50:29,947 INFO : Sending DeleteWordset request
2023-01-26 16:50:29,948 INFO : Sending request: artifact_reference {
uri: "urn:nuance-mix:tag:wordset:lang/names-places/places-compiled-ws/eng-USA/mix.asr"
}
2023-01-26 16:50:29,948 INFO : Sending metadata: []
2023-01-26 16:50:30,291 INFO : Received response: request_status {
status_code: OK
http_trans_code: 200
}
2023-01-26 16:50:30,291 INFO : Done running file [flow_deletewordset.py]
2023-01-26 16:50:30,292 INFO : Iteration #1 complete
Done
Troubleshooting
These are some of the errors you may encounter using the sample training client.
Existing wordset: If you use the same wordset name in a compile request, you receive an error that the wordset already exists. You can either use a new name or delete the existing wordset before creating it again:
2021-04-05 17:37:41,457 INFO : Sending metadata: []
2021-04-05 17:37:41,977 INFO : Received response: request_status {
status_code: ALREADY_EXISTS
status_sub_code: 10
http_trans_code: 200
status_message {
locale: "en-US"
message: "Compiled wordset already available for artifact reference urn:nuance-mix:tag:wordset:lang/names-places/places-compiled-ws/eng-USA/mix.asr"
message_resource_id: "10"
}
}
JSON errors: If you source wordset uses incorrect JSON, you receive errors to help you correct it. In this example, the JSON is missing a quotation mark:
2021-04-05 16:34:55,874 INFO : Received response: request_status {
status_code: BAD_REQUEST
status_sub_code: 7
http_trans_code: 400
status_message {
locale: "en-US"
message: "Invalid wordset content Unexpected token c in JSON at position 5"
message_resource_id: "7"
}
}
And this JSON has a missing end brace:
2021-04-05 16:39:16,027 INFO : Received response: request_status {
status_code: BAD_REQUEST
status_sub_code: 7
http_trans_code: 400
status_message {
locale: "en-US"
message: "Invalid wordset content Unexpected end of JSON input"
message_resource_id: "7"
}
}
Not defined in model: You may ignore this error.
status: JOB_STATUS_QUEUED
messages {
code: 15
message: "The following entities are not defined in the model: PLACES."
}
Another authorization method
The shell script or batch file provided with the sample client passes your Mix credentials to the client. The client generates a token that authorizes it to use the Training service. This is the recommended method as it only generates a new token when the existing one is about to expire.
For testing purposes, you may instead generate a token and pass it to the client. Copy the following code into a shell script or batch file. On Linux, give the shell script execute permission with chmod +x
.
#!/bin/bash
CLIENT_ID=<Mix client ID, starting with appID:>
SECRET=<Mix client secret>
#Change colons (:) to %3A in client ID
CLIENT_ID=${CLIENT_ID//:/%3A}
MY_TOKEN="`curl -s -u "$CLIENT_ID:$SECRET" \
"https://auth.crt.nuance.com/oauth2/token" \
-d "grant_type=client_credentials" -d "scope=asr.wordset" \
| python -c 'import sys, json; print(json.load(sys.stdin)["access_token"])'`"
python3 training-client.py --serverUrl asr.api.nuance.com:443 --secure \
--token $MY_TOKEN --files $1 \
--wsFile places-wordset.json
# $1 - The name and location of an input file, for example flow_compilewordsetandwatch.
@echo off
setlocal enabledelayedexpansion
set CLIENT_ID=< Mix client ID, starting with appID:>
set SECRET=<Mix client secret>
rem Change colons (:) to %3A in client ID
set CLIENT_ID=!CLIENT_ID::=%%3A!
sset command=curl -s ^
-u %CLIENT_ID%:%SECRET% ^
-d "grant_type=client_credentials" -d "scope=asr.wordset" ^
https://auth.crt.nuance.com/oauth2/token
for /f "delims={}" %%a in ('%command%') do (
for /f "tokens=1 delims=:, " %%b in ("%%a") do set key=%%b
for /f "tokens=2 delims=:, " %%b in ("%%a") do set value=%%b
goto done:
)
:done
rem Remove quotes
set MY_TOKEN=!value:"=!
python training-client.py --serverUrl asr.api.nuance.com:443 --secure ^
--token %MY_TOKEN% --files %1 ^
--wsFile places-wordset.json
rem %1 - The name and location of an input file, for example flow_compilewordsetandwatch.
The results are the same as when you pass your credentials to the client and let the client generate the token when required.
Related topics
- gRPC setup
- Prerequisites from Mix
- Wordsets
- Recognizer API > ResourceReference
- Training API
- Training API > CompileWordsetAndWatch
- Training API > GetWordsetMetadata
- Training API > DeleteWordset
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.